关于举办“二维材料光子学和光电子学”学术讲座的通知

 

   发布日期:2018-03-05  浏览次数:1038

 

题目:二维材料光子学和光电子学

主讲:鲍桥梁教授

时间:20183915:00

地点:电光学科楼B322

主办:电子与光学工程学院、微电子学院

鲍桥梁简介:

 鲍桥梁,博士,澳大利亚蒙纳士大学(Monash University)材料科学与工程系,国家卓越研究计划未来低能电子技术中心核心成员,终身执教副教授。

    鲍桥梁博士分别于2000年和2003年在武汉理工大学材料科学与工程学院获得学士和硕士学位,2007年于武汉大学物理学院获得博士学位。2008-2012年,供职于新加坡国立大学石墨烯研究中心。目前为澳大利亚蒙纳士大学材料科学与工程系终身副教授。累计发表了150余篇文章,被引频次超13000次,H指数为48。研究方向主要集中在二维材料的合成、光学特性以及其在光子和光电器件中的应用。

    鲍教授及其团队主要研究二维材料中的光与材料相互作用。为了改进石墨烯光电探测器,使其能在不同频谱范围工作,鲍教授及其团队将石墨烯与其他不同电子结构的二维材料复合,如石墨烯和钙钛矿异质结构可以实现高效可见光探测[1],石墨烯与MoTe2和石墨烯与Cu3-xP异质结构均可实现高效红外光探测[2],石墨烯与Bi2Te3异质结构可以实现宽带红外光探测[3]。研究发现光栅压效应在光电流增强中起到关键性作用。鲍教授及其团队提出了一种可以生长和转换大面积WS2单晶[4]、大面积MoS2/WS2异质结阵列[5]、 单双层结构的WSe2异质结[6]的新方法,并证实了它们在具有大面积光敏区域的高响应光电探测器件中的应用。另外,鲍教授团队采用光谱或近场空间成像技术对石墨烯与拓扑绝缘体Bi2Te3[7]、石墨烯纳米带[8]、三维石墨烯[9]的等离子体激元的激发和太赫兹的调制等方面做了大量研究。主要成果包括:两种狄拉克材料的等离子激元耦合[7]、高阶模式的激发[9]、边缘手性相关等离激元展宽[8]等。鲍教授还将介绍其团队在二维非层状钙钛矿纳米片的合成以及其在波导[10,11]、光电探测器[12,13]、光纤激光器[14]LED[15]和太阳能电池方面[16,17]的最新研究进展。总之,一系列基于二维材料光电器件的工作将为新一代光子和光电器件的研发铺平道路。


封面:

   

     

近几年主要工作成果:

1.Advanced Optical Materials, 2015, 3, 1389.

2.  Small, 2017,13 (24): 1700268; Small, 2017, 13 (42): 1701881.

3.ACS Nano, 2015, 9 (2):1886–1894.

4.ACS Nano, 2015, 9 (6), 6178–6187.

5.ACS Nano, 2016, 10: 573-580.

6.2D Materials, 2016, 3 (4), 041001.

7.ACS Photonics, 2017, 4 (12), 3055–3062; JOSAB, 2016, 33(9):1842-1846.

8.Light: Science & Applications (2017) 6, e16204.

9.ACS Photonics, 2016, 3, 1986.

10.Nanoscale, 2015, 8, 6258-6264.  

11.Angewandte Chemie, 2017, 56(41): 12486–12491..

12.ACS Nano, 2016, 10 (3): 3536–3542; ACS Nano, 2016, 10, 7031-7038.

13.Advanced Materials, 2018, in press.

14. ACS Applied Materials and Interfaces, 2017, 9 (14), 12759–12765.

15. Advanced Functional Materials, 2017, 6:1606874.

16. Advanced Materials, 2017, 29(18): 1606370; Advanced Energy Materials, 7 (20): 1700946.

17. Nature Communications, 2017, 8: 613.



报告标题:Photonics and Optoelectronics of 2D Materials


报告人:Qiaoliang Bao

Department of Materials Science and Engineering, and ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), Monash University, Clayton, Victoria 3800, Australia     

Tel: (+61) 3 9905 4927; E-mail: qiaoliang.bao@monash.edu

Abstract

Our research interests are mainly focused on the light-matter interactions in 2D materials. In order to fabricate improved graphene photodetectors working in different spectral ranges, we integrated graphene with other 2D materials with variant electronic structures, for example, graphene/perovskite for visible light detection [1], graphene/MoTe2 and graphene/Cu3-xP for near infrared light detection [2], and graphene-Bi2Te3 for broadband infrared light detection [3].  

It is found that the photo-gating effect plays an important role to amplify the photocurrent. Furthermore, we developed new methods to grow and transfer large area single crystal WS2 [4], large area MoS2/WS2 heterojunction array [5], and monolayer-bilayer WSe2 heterojunction [6], and demonstrated their applications for highly responsive photoelectric devices with large photo-active area. We investigated plasmonic excitation and THz modulation in graphene/Bi2Te3[7], graphene nanoribbon [8] and 3D graphene [9] using either spectroscopic or real space imaging techniques. The important discoveries include the plasmonic coupling of two Dirac materials [7], excitation of high-order mode [9]  

and edge chirality-related plasmonic broadening [8]. Lastly, we report our recent progress on the synthesis of 2D non-layered perovskite nanosheets as well as their optoelectronic applications in waveguide [10, 11], photodetectors [12, 13], fiber lasers [14], LED [15] and solar cells [16, 17]. In summary, the advances of 2D materials may pave the way for the next generation photonic and optoelectronic applications.


Keywords:  graphene; photonics; optoelectronics, 2D materials.   


Reference

1.Advanced Optical Materials, 2015, 3, 1389.

2.  Small, 2017,13 (24): 1700268; Small, 2017, 13 (42): 1701881.

3.ACS Nano, 2015, 9 (2):1886–1894.

4.ACS Nano, 2015, 9 (6), 6178–6187.

5.ACS Nano, 2016, 10: 573-580.

6.2D Materials, 2016, 3 (4), 041001.

7.ACS Photonics, 2017, 4 (12), 3055–3062; JOSAB, 2016, 33(9):1842-1846.

8.Light: Science & Applications (2017) 6, e16204.

9.ACS Photonics, 2016, 3, 1986.

10.Nanoscale, 2015, 8, 6258-6264.  

11.Angewandte Chemie, 2017, 56(41): 12486–12491..

12.ACS Nano, 2016, 10 (3): 3536–3542; ACS Nano, 2016, 10, 7031-7038.

13.Advanced Materials, 2018, in press.

14. ACS Applied Materials and Interfaces, 2017, 9 (14), 12759–12765.

15. Advanced Functional Materials, 2017, 6:1606874.

16. Advanced Materials, 2017, 29(18): 1606370; Advanced Energy Materials, 7 (20): 1700946.

17. Nature Communications, 2017, 8: 613.  



Selective covers:

    

   




Short biography: Dr. Qiaoliang Bao received his Bachelor (2000) and Master (2003) degree from School of Materials Science and Engineering, Wuhan University of Technology, and Ph. D degree from Physics Department, Wuhan University (2007). From 2008 to 2012, he has been working on graphene photonics in Graphene Research Centre, National University of Singapore (NUS). He is now appointed as tenured Associated Professor at Department of Materials Science and Engineering, Monash University, Australia. He has authored or co-authored more than 150 refereed journal articles with more than 13,000 total citations and an H-index of 48. His research interests include synthesis and optical characterization of two-dimensional materials as well as their incorporation into photonic and optoelectronic devices.  


 
版权所有:南京邮电大学电子科学与技术实验教学中心    技术支持:南京先极科技有限公司